
TECHNICAL PAPER

Optimizing Video Startup Time
Adobe® Primetime DRM

By Eric Ha
Project Lead

February 2015

© 2015 Adobe Systems Incorporated. All rights reserved.

If this whitepaper is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used
or copied only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that
the content in this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Adobe Systems
Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide.

This article is intended for US audiences only.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.

Adobe and the Adobe logo, Adobe Integrated Runtime (AIR), ColdFusion, Flash, and Flash Media Server are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users. The Software and Documentation are “Commercial
Items,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are
used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the
Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as Commercial Items and (b)
with only those rights as are granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright laws of the United
States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal
opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974
(38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative
action clause and regulations contained in the preceding sentence shall be incorporated by reference.

	

	

	

TABLE OF CONTENTS

Table of Contents	
 ...	
 1	

Introduction	
 ...	
 2	

DRM Playback Steps	
 ..	
 2	

(1)	
 Activate	
 Primetime	
 DRM	
 (Download	
 the	
 DRM	
 Module)	
 ...	
 3	

(2)	
 Individualize	
 ..	
 3	

(3)	
 Acquire	
 a	
 License	
 (or	
 Authenticate)	
 ...	
 3	

Optimization 1: Front Load SystemUpdater API	
 ..	
 4	

Optimization 2: Front-Load Individualization	
 ...	
 5	

Optimization 3: DRMManager.initialize()	
 ...	
 6	

Optimization 4: Load License out of band	
 ..	
 7	

Optimization 5 – partially unencrypted CONTENT	
 ..	
 8	

Case Study	
 ...	
 9	

Suggested Workflow	
 ..	
 11	

Online resources	
 ..	
 12	

About the author	
 ...	
 12	

	

	

	

INTRODUCTION
One of the most important factors in ensuring a satisfying user experience is the initial performance of
the primary use case. For the video delivery ecosystem, this is quantified with the metric: "After I hit
PLAY, how long do I have to wait before my video starts?" A near-instant start-up is the bar that we strive
to attain. Noticeable waits result in unhappy customers; long waits result in lost customers and missed
revenue.

Primetime DRM technology is for Digital Rights Management (DRM) of premium video content. In
addition, the Primetime authentication solution, key to the TV-Everywhere initiative, leverages
Primetime DRM technology, and can utilize most of the optimizations described in this paper.

DRM PLAYBACK STEPS
You must complete several steps before a client can play content protected by Primetime DRM. All of
these steps require network communication. As a result, latency is observed, especially if the client has a
high-latency network connection.

The steps to play Primetime DRM content are:

Step 1: Activate/Download the Primetime DRM Module (Flash Player Only)
Primetime DRM can be activated in Flash Player via the AS3 (ActionScript 3) API
flash.system.SystemUpdater.update(). This call invokes a download of the DRM module for
the current version of Flash Player. This module may be several megabytes in size. The device must
complete this step before Flash Player can call any other Primetime DRM APIs.

Step 2: Individualize
After the DRM module has been downloaded to the device, a key provisioning process (called
individualization) must run before the system can consume Primetime DRM content. The
individualization process is automatically invoked on the first call to any Primetime DRM API (such as
flash.net.drm.DRMManager). During individualization, the runtime communicates with the
Adobe® Individualization server to set up a protected license store on the client device.

Step 3: Acquire a License (or Authenticate)
After the runtime has downloaded the Primetime DRM Module (Flash Player only) and completed the
individualization step, the runtime can then handle Primetime DRM content. However, to play the
content, the client must first acquire a playback license from a Primetime DRM license server. The
license is acquired by sending a license request message to the appropriate license server. The server
processes the request, performs any required authentication/authorization/entitlement, and returns a
license that Flash Player can use to decrypt the video stream.

Step 4: Play Content
Once all previous steps have completed, you can initiate playback of the content via the .play() call.

All of the steps above must be completed before the device can play content. However, not all of them
are necessary every time a new video is played. This is dependent on whether this is the first time the
runtime has ever played protected content. The following scenarios indicate which of the above steps
are necessary when playing protected content:

	

	

	

(1) Activate Primetime DRM (Download the DRM Module)
Flash Player must download the DRM Module when:

1) A client installs Flash Player for the first time
2) A client upgrades to a new version of Flash Player
3) Flash Player detects that the existing DRM Module has been tampered with/corrupted.

This is always accompanied with a DRMErrorEvent 3343 error code when
attempting to call into any Primetime DRM ActionScript API. In this situation, your
ActionScript video player should respond to a 3343 by attempting to re-download the
DRM Module.

(2) Individualize
The device must (automatically) individualize when:

1) (Flash Player) A new DRM Module has been downloaded.
2) (Flash Player) A new browser or computer user account is used to play Primetime

DRM-protected content for the first time.
3) (iOS & Android) The application is installed or reinstalled.
4) (All Runtimes) The license store has been reset (e.g., by a .resetDRMVouchers()

call, or a manual deletion of the license store, or a clearing of the web browser’s
settings).

(3) Acquire a License (or Authenticate)
The runtime must acquire a license from a Primetime DRM license server when:

1) NetStream.play() is called or a playback license cannot be found.
2) DRMManager.loadVoucher(“FORCE_REFRESH”) is called.
3) DRMManager.loadVoucher(“ALLOW_SERVER”) is called, and there is no

license on the client.*

Note: When DRMManager.loadVoucher("ALLOW_SERVER") is called, the device checks
the local system to determine if a license is present. If not, it will then contact the license server
to acquire a license.

While the Primetime DRM workflow involves a number of steps beyond the ones described above, the
steps mentioned above are the most time-consuming, as information has to travel over a network
connection. Once the steps are complete, a DRM decryption context is initialized on the client and is
ready to begin decrypting protected video (or perform any other Primetime DRM operation, such as
authentication). At this point, a call to NetStream.play() or TVSDK.play() on a Primetime DRM-
protected video yields startup performance nearly equal to that of unencrypted video.

The worst-case scenario occurs when a client who has just installed (or updated) Flash Player attempts
to play a protected video. The user must wait for a several-megabyte DRM Module to download, wait
for client individualization to complete, and then wait for the device to request a license from the
license server. Only at that point is video decrypted and presented onscreen.

Fortunately, there are several optimization options. Most of these options involve front-loading these
time-expensive operations to earlier parts of your user's content consumption workflow. Because
different users of Primetime DRM utilize different workflows and business rules, the techniques
described here should be adapted to your particular situation.

	

	

	

OPTIMIZATION 1: FRONT-LOAD SYSTEMUPDATER API
Move the SystemUpdater ActionScript API as early in the workflow as possible, as this can be done
independently and has no prerequisites. You might even consider putting this call at the beginning of
the user experience workflow, when the user begins the process of purchasing the content.

After the client has successfully downloaded the DRM Module, it will not have to do it again unless the
end-user upgrades their Flash Player.

For this approach to be successful, there are a few requirements that should be understood:

1. There is a SWF present on the page that the user is currently viewing.
2. The SWF stays loaded in the page long enough for the entire DRM Module download to

complete.
3. Calling the SystemUpdater API when the DRM module is already downloaded results in

a no-op, where a network call isn’t even made.

Note #1
Call the SystemUpdater API as early as possible on a page where it’s known that viewers remain for
some time. You may even need to call SystemUpdater from a page that does not otherwise have
any SWF assets. If this is the case, you can create an invisible SWF (or one with dimensions of 0 x 0) to
embed into the page. From within this hidden SWF, the API can be called to download the DRM
Module.

Note #2
As the call to download the DRM module is initiated from within a SWF, you must keep the SWF loaded
on the current page until the download has completed. If the user navigates away, the current TCP/IP
connections initiated from within the SWF will be destroyed as part of the normal SWF unloading
process.

It is safe to call SystemUpdater repeatedly, as Flash Player gracefully handles DRM Module download
failures. However, in an effort to conserve the end user’s bandwidth, Adobe recommends that you
embed the SystemUpdater call in a page the user is likely to view for a long time. One suggestion is
the payment-entering workflow, or perhaps the HTML page behind the iFrame (if iFrames are used).

Note #3
In the case that a DRM module is present and valid, a subsequent call to SystemUpdater results in a
NO-OP, and generates no network traffic.

	

	

	

OPTIMIZATION 2: FRONT-LOAD INDIVIDUALIZATION
Individualization can only be triggered by a call into a Primetime DRM API (such as any method of
DRMManager). After individualization has happened once, the client will not have to perform the
action again, unless their DRM system is reset.

In most workflows, individualization happens when a call is made to DRMManager.loadVoucher(),
which acquires a license from the Primetime DRM license server. To leverage this side-effect, a DRM
metadata of any protected content (which we will call a “dummy metadata”) can be fed into this API in
order to trigger an individualization. To further improve performance, the API can be called
with: .loadVoucher("LOCAL_ONLY"). The use of LOCAL_ONLY instructs PrimetimeDRM to only
check the local file system for a playback license (which will always fail if you use a dummy metadata).
You’ll immediately get a DRMErrorEvent indicating a license was not found, without having to wait
for a network call to be made to the license server. As soon as the call fails/succeeds, your device has
been individualized.

// Instantiate DRMContentData
DRMContentData cd = new DRMContentData(metadataByteArray)

// Instantiate DRMManager using DRMContentData
DRMManager manager = new DRMManager(cd)

// Induce individualization. It is OK if the license acquisition fails here
// because we’re only interested in entering any Primetime DRM workflow,
// which will automatically trigger an individualization behind the scenes.
Manager.loadVoucher(“LOCAL_ONLY”)

By doing this, the Primetime DRM can perform individualization at any time. In addition to getting
individualization out of the way, this process will also initialize the underlying DRM Decryption Context,
which performs the actual cryptographic operations when the time comes to consume and decrypt
video.

	

	

	

OPTIMIZATION 3: DRMMANAGER.INITIALIZE()
For ANDROID and IOS Primetime, there is no need to use DRMManager.loadVoucher() in order to
cause individualization as a side-effect. There is an API that was introduced which encapsulates the
previous optimization of inducing individualization. In addition, other DRM-priming operations are
performed for the purposes of improving video startup time when Primetime attempts to play a
protected video.

A call to DRMManager.initialize() will invoke a license request using a pre-captured license
request message that has been baked into the Primetime client, performing the individualization and
initializing the DRM Context initialization described above.

When calling this API, it is not necessary to perform the previous optimization of “Front-Load
Individualization”, since this API encapsulates that logic.

	

	

	

OPTIMIZATION 4: PRELOAD LICENSE
Where possible, the video content server should make available the DRM metadata for its Primetime
DRM content. FLV and F4V content have separate DRM metadata sidecar files during packaging. HLS,
HDS, and DASH content contain the DRM metadata in their manifests.

DRM metadata is an artifact generated during the Primetime DRM packaging (encrypting) process. This
metadata contains information needed by Primetime DRM to acquire and associate DRM licenses to
protected content, such as the URL to the license server and the licenseID of the license needed to
decrypt the content. All Primetime DRM content has the DRM metadata embedded into its header or
manifest, which can be extracted by Primetime during playback. However, you can also generate
external (“sidecar”) metadata during content packaging.

If the DRM metadata is available to the device, Primetime has the ability to acquire a DRM license from
the Primetime DRM license server ahead of time, before the user attempts playback of the video.

Some applications, especially adopters of Flash Media Rights Management Server (FMRMS), which
predates Primetime DRM, tend to have the following inefficient workflow shown below. For simplicity,
the sample is in ActionScript; the same logic applies to iOS and Android platforms.

// Play a video stream without determining if it is/isn’t protected
Play(videoURL)
 // Register error and status event listeners

registerEventListener(DRMErrorEvent, onDRMError)
 registerEventListener(DRMStatusEvent, onDRMStatus)

 // Play video stream
 netStream.play(videoURL)

onDRMErrorEvent(event)
 // Listen for an error event to indicate content is protected and not playable.
 // If protected, abort this workflow and acquire DRM license

if (event.ID == "DRM.encryptedFLV")
 DRMManager manager = new DRMManager(event.DRMContentData)

// If license request is successful, a DRMStatus event will be dispatched
Manager.loadVoucher()

 // Abort previous playback attempt

netStream.stop()

onDRMStatusEvent (event)
// If the loadVoucher() call was successful, a DRMStatusEvent is dispatched.
// Protected content now has a license and can be played
netStream.play (videoURL)

As an alternative to this multiple-callback-loop approach, Adobe recommends that you make the DRM
metadata available, so that Primetime can be used to “pre-fetch” the license before making the initial
call to “play()”. In this way, the DRM Decryption context will be fully initialized and playback
response will be comparable to the experience of playing unencrypted content.

Note: This workflow is currently not possible with Adobe® Open Source Media Framework (OSMF) v2.0.
OSMF will automatically acquire a license when it detects DRM metadata within the stream or manifest.
Support for pre-loading a license is not currently available. This optimization is only possible if the
ActionScript application is not utilizing OSMF, or if OSMF is custom-modified by the developer.

	

	

	

OPTIMIZATION 5: NOT ENCRYPTING THE BEGINNING VIDEO
During the packaging process, Primetime DRM has the option of leaving the beginning portion of the
video unencrypted. By leaving the beginning of the video unencrypted, the Primetime client can
immediately begin video playback while the other DRM initialization and license acquisition steps occur
in parallel. When the threshold of the unencrypted and encrypted boundary is reached, the client will
seamlessly transition to the encrypted content.

In the Primetime DRM Java SDK, this feature is included in the Command Line tool packager
“AdobePackager.jar” and is configured via the property file configuration:

encrypt.contents.secondsUnencrypted

If you are using another service/vendor/encoder/tool to perform your content packaging, please refer
to their associated documentation on how to encrypt/package content so that the first several seconds
of content is left unencrypted.

Below is an example of HLS content protected with Primetime DRM that has the segments 0-4
unencrypted, and the rest of the segments encrypted.

#EXTM3U
#EXT-X-TARGETDURATION:10
#EXT-X-VERSION:3
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-PLAYLIST-TYPE:VOD
#EXT-X-DISCONTINUITY
#EXT-X-KEY:METHOD=NONE
#EXTINF:10.00000,
fileSequence0.ts
#EXTINF:10.00000,
fileSequence1.ts
#EXTINF:10.00000,
fileSequence2.ts
#EXTINF:10.00000,
fileSequence3.ts
#EXTINF:10.00000,
fileSequence4.ts
#EXT-X-DISCONTINUITY
#EXT-X-FAXS-CM:………………Bzixzf7oXU=
#EXT-X-KEY:METHOD=AES-
128,URI="http://faxs.adobe.com",IV=0x2c5601b56600960b8edc7a47e11e2a21
#EXTINF:10.00000,
fileSequence5.ts
#EXTINF:10.00000,
fileSequence6.ts
#EXTINF:10.00000,
fileSequence7.ts
#EXTINF:10.00000,
fileSequence8.ts
#EXTINF:10.00000,
fileSequence9.ts
#EXTINF:10.00000,
fileSequence10.ts
#EXT-X-ENDLIST

	

	

	

CASE STUDY
To illustrate the various optimizations described in this document, a hypothetical case study is
presented below, along with Adobe’s suggested best practices. Note that this is a typical, non-optimal
implementation that lacks any of the optimizations covered in this document.

In the sample below, all of the logic for Primetime DRM playback is implemented within a single video
player application. The entry point for all DRM related actions will be triggered only when the user
clicks the "play" button, expecting to be presented with video. This is usually not optimal, and should
be avoided. This code is written in ActionScript, but the same logic applies to all other Primetime clients.

The pseudocode for the NOT-RECOMMENDED INEFFICIENT WORKFLOW looks like this:

// Initialize handlers & play URL, not knowing if video is DRM-protected
playVideo(url)
{

// handle errors that may require refreshing DRM Module
stream.addEventListener(DRMErrorEvent, onDRMError)
// listen for status event to determine if video is DRM-protected
stream.addEventListener(StatusEvent, onStatusEvent)
// listen for moment when DRM system is initialized & license is available
stream.addEventListener(DRMStatusEvent, onDRMStatusEvent)

// attempt to immediately play content, without knowing if it is DRM'd
stream.play(url)

}

// Handle DRM Module update required
function onDRMError(event)
{
 // if Module is missing or corrupted
 if (event.ID == "3344" || event.ID == "3343")
 {
 // video cannot be played, so stop faulty playback
 stream.stop()

 // download new DRM module
 SystemUpdater.update("DRM")
 }
}

// Listen for status code to determine if video is DRM'd
function onStatusEvent(event)
{
 // if StatusEvent indicates video is encrypted
 if (event.ID == "DRM.encryptedFLV")
 {
 // video cannot be played, so stop faulty playback
 stream.stop()

 // extract DRMContentData from event
 drmContentData = (event as StatusEvent).DRMContentData

 // Initialize DRMManager & make asynch call to acquire license
 drmManager.loadVoucher(drmContentData)
 }
}

// Listen to determine if DRM has been initialized (and license is available)
function onDRMStatusEvent(event)
{
 // if DRMStatusEvent is returned, all DRM subsystems have been initialized,
 // license is available, and content is ready to be played.
 if (event is DRMStatusEvent)
 {
 // video cannot be played, so stop faulty playback
 stream.stop()

	

	

	

 // play content via NetStream
 stream.play(url)
 }
}

This workflow should be avoided at all costs. Let's take a moment to reflect on what can be improved.

1. The code has no prior knowledge of whether the content is DRM protected or not. It is blindly
playing the content and waiting for a NetStatusEvent to inform the video player if the content is
protected and that the Primetime DRM workflow should be initiated. After the system is ready, the
original NetStream.play() operation must be stopped and restarted. This is because playback of
an encrypted stream when the DRM decryption context is not ready will fail and cannot be recovered.

Improvement: Revise the end-user workflow to inject information in advance so that it's known
whether or not the content is protected.

2. The code waits for a DRMErrorEvent before determining whether or not it should invoke the
SystemUpdater API to update the DRM Module on the device.

Improvement: Instead of waiting until the user clicks Play before determining if an error is dispatched
(indicating a DRM Module download is required), take the initiative and call SystemUpdater ahead of
time. Perhaps make this call when the user is typing their information for purchasing/renting the
content.

3. The code waits for a StatusEvent to indicate that the content is protected. At that point, it
extracts the DRMContentData from the event in order to initialize a DRMManager object. The
DRMManager is then used to request a license from the license server. Typically, this workflow is used
if there are business or technical reasons prohibiting the video content from being accompanied by the
DRMContentData as a sidecar file. If there are no such restrictions in place, the Primetime DRM Java
command line packaging tool (AdobePackager.jar) can be used to generate a .metadata file,
along with the encrypted video. In addition, the Primetime DRM SDK can also be used to generate this
sidecar file.

Improvement: Instead of waiting for an event to come back indicating that the content is protected
and a license should be acquired, the application should inspect the content’s metadata or manifest.
This informs the player that the content is protected, and that the player should pre-download the
license before playback is initiated.

	

	

	

SUGGESTED WORKFLOW
The following snippet demonstrates the suggested workflow using the optimizations described above.	

// Initiate DRM Module download very early, perhaps at website landing page
updateModule()
{
 SystemUpdater.update()
}

// Acquire the license as soon as possible, ideally well before user initiates playback
acquireLicense(sidecarMetadata)
{
 // Register StatusEvent, DRMStatusEvent, and DRMErrorEvent handlers

netstream.addEventListener(DRMErrorEvent, onDRMError)
stream.addEventListener(StatusEvent, onStatusEvent)
stream.addEventListener(DRMStatusEvent, onDRMStatusEvent)

// Load metadata from sidecar file & create DRMContentData
ByteArray ba = new ByteArray(sidecarData)
DRMContentData cd = new DRMContentData(ba)

// Create DRMManager and Acquire license
DRMManager manager = new DRMManager(cd)
manager.loadVoucher(“ALLOW_SERVER”)

}

// Play the video. By now, all of the preconditions should be met and playback
// should immediately start
playVideo (url)
{

netstream.play(url)
}

	

	

	

ONLINE RESOURCES

Adobe® Access AS3 Developer Guide
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118666ade46-7ce3.html

Adobe® Access ActrionScript Documentation
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/drm/package-
detail.html

Adobe® Access Product Page & Documentation
http://www.adobe.com/support/documentation/en/flashaccess/index.html

ABOUT THE AUTHOR
As Project Lead for Primetime DRM Engineering, Eric has his hands in most of the bleeding-
edge video delivery, protection, and monetization systems at Adobe Systems Inc. In a previous
life, he may admit to having developed software systems for medical devices.

